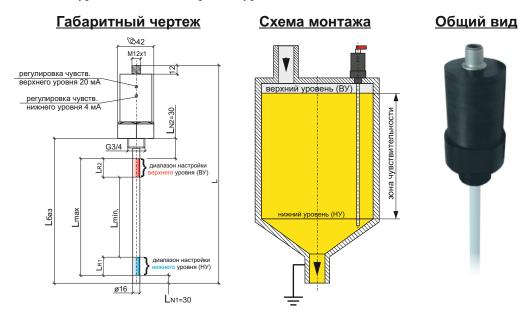


Паспорт Датчик непрерывного измерения уровня Модель SEA01-I420-1000-DC-P12-FP

Назначение:

Датчик предназначен для непрерывного анализа уровня токопроводящих сред. Может применяться в сельском хозяйстве (разведение КРС, производство и переработка молока, птицеводство, свиноводство, орошение и полив в растениеводстве), пищевой промышленности (производство и фасовка молочных продуктов, розлив напитков, соков), в химической и других отраслях.


Принцип действия:

Датчик ёмкостный с аналоговым выходом для непрерывного анализа уровня жидкости - электронное устройство, создающее электрическое поле в зоне чувствительности, реагирующее на изменение уровня жидкости, при погружении чувствительного элемента и преобразующее значение этого уровня в аналоговый сигнал по току или напряжению с линейной зависимостью.

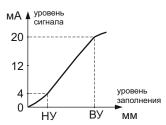
Применение:

Датчик устанавливается в металлическую ёмкость в вертикальном положении, при этом чувствительный элемент погружается вовнутрь. Чувствительный зонд датчика имеет непосредственный контакт с измеряемой средой. Изменение уровня измеряемой среды вызывает пропорциональное изменение выходного сигнала с датчика.

В датчике предусмотрена возможность независимой (друг от друга) регулировки нижнего уровня LR1, так и верхнего уровня LR2.

Телефон: +7(351)248-46-52, e-mail: sale@beskonta.ru, www.beskonta.ru

Телефон: +7(351)248-46-52, e-mail: sale@beskonta.ru, www.beskonta.ru

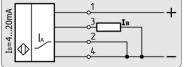

Технические характеристики:

Установочный размер резьбы	G3/4"		
Напряжение питания постоянного тока	1830 B		
Номинальное напряжение питания	24 B		
Диапазон изменения тока на выходе	420 mA		
Сопротивление нагрузки	<300 Om		
Скорость изменения тока нагрузки	100 mA/c		
Номинальный контролируемый уровень Lmax	1000 mm		
Контролируемая жидкость	Молоко, вода		
Диапазон температур рабочей среды	+5+95 ºC		
Погрешность преобразования в температурном			
диапозоне +595 ºС	±2%		
Независимая регулировка чувствительности:			
- нижнего уровня [LR1]	20% от Lmax		
- верхнего уровня [LR2]	20% от Lmax		
Способ присоединения	Разъём		
Степень защиты корпуса датчика	IP67		
Степень защиты погружаемой части датчика	IP68		
Материал корпуса	Полиамид		
Материал оболочки погружаемой части датчика	Фторопласт		
Давление контролируемой жидкости	1,5 бар		

Таблица типоразмеров

Зависимость вых.сигнала от уровня жидкости

Lбаз	310	560	810	1060	1310	1560	1810
Lmax	250	500	750	1000	1250	1500	1750
LR1, LR2	50	100	150	200	250	300	350
Lmin	150	300	450	600	750	900	1050



L_{max}=L_{min}+L_{R1}+L_{R2} L_{6a3}=L_{max}+L_{N1}+L_{N2}

Схема подключения

Ln1 - нижняя зона нечувствительности

Ln2 - верхняя зона нечувствительности

